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Abstract: Paneling curved architectural skins often require rationalization prior
to fabrication or the use of fabrication-aware design tools. We present optimiza-
tion methods based on concepts from classical and discrete differential geometry,
which can provide a significant cost reduction. After a short overview of early
contributions and their use in real projects, we turn to recent work. This in-
cludes the use of spherical panels, cost reductions achieved via surfaces with a
relation between principal curvatures, paneling with cold bent glass, and a dra-
matic reduction of the number of required molds when working with sheet metal
or similarly behaving materials. Finally, we present a novel fabrication-aware
interactive computational design tool.

1 Introduction

Pioneering research on computational support for the realization of architectural freeform
structures, e.g. by Glymph et al. [7] and Shelden [17], sparked a remarkable stream of work
on Architectural Geometry and a rapid development of key techniques for the design and fab-
rication of freeform architecture. This research lies at the interface of Applied Mathematics
(mainly discrete differential geometry and numerical optimization), Geometry Processing,
and Computational Architectural Design and Engineering (see e.g. the survey [14]).

The present paper tackles an important sub-problem of Architectural Geometry, namely pan-
eling geometrically complex architectural surfaces. In Section 2, we review some essential
early contributions and point to realized architectural projects. In those projects, Evolute
GmbH in Vienna has been acting as a geometry consultant and link between the state of the
art in research and construction practice.

The major part presents some computational technologies that emerged in the past few years
and so far have only been realized in small-scale prototypical models. We distinguish between



methods where the panels are assumed to be rigid (Section 3) and panels that are flexible to
some degree, even after being possibly shaped over a mold (Section 4). We conclude in
Section 5 with a brief description of very recent work on interactive computational design
tools that shall be made available to the community in the very near future.

2 Early paneling solutions and their applications

Flat panels. Flat panels are the simplest ones to deal with, but even that case is not as easy as
one may think. The most straightforward way of using triangular panels shifts the problems
from the panels to the supporting structure, since, in a triangle mesh, typically six beams
meet at a node. For freeform geometries, there will always be torsion in the nodes, which are
then geometrically quite complicated objects. While the support structure becomes simpler
for quadrilateral panels, one has limitations on the layout related to the curvature behavior
of the reference surface. Natural relations to discrete differential geometry help to solve
the underlying geometric optimization problems. We refer to [8, 18, 14] for more details.
Projects, where such optimization algorithms have been used, include the Museum of Islamic
Art in the Louvre (supporting hybrid mesh of triangular and planar quads) and the roof of the
Chadstone Shopping Center in Melbourne (planar quad panels).

Paneling algorithm of Eigensatz et al. [5]. Given a freeform surface that represents the
architectural skin and an initial panel boundary layout, the goal is to attach a panel per patch
of this layout so that the overall solution fits the available budget and the aesthetic expectation
of the designer. Quality criteria include gaps between adjacent panels that can be hidden in
the seams and angles between normals of panels at common seams. Clearly, the smaller these
values are, the smoother the overall appearance of the skin will be. One works with different
panel types and a user-adjustable fabrication cost per type, the cheapest being flat and the
most expensive being those panels requiring a custom-made mold. Even mold re-use has
been included. Important degrees of freedom lie in the controllable deviation from the given
reference geometry. The algorithm delivers a family of solutions, starting with the most cost-
effective panelization (at the price of lower smoothness) and progressing to smoother ones at
a higher cost. Examples of the use of this algorithm in real projects include the Eiffel Tower
Pavilions [1] and the stadium Arena Corinthians in São Paulo [16] (Fig. 1).

3 Recent progress on the effective use of rigid panels

Spherical panels. The availability of spherical glass panels (see e.g. [15]) motivated research
on the use of spherical rather than flat panels. Even if one restricts to a small number of
sphere radii, one can achieve an improvement in the visual appearance over flat panels, while
keeping other essential aspects, such as torsion-free supporting structures. The geometric
fundamentals for such paneling solutions are found in a very recent contribution on meshes
with spherical faces [10]. It uses methods from the so-called Möbius geometry of spheres
and geometric optimization to provide a systematic study of the various types of meshes
with spherical faces and to address key aspects relevant for paneling. These include surface
smoothness, the geometry of support structures, and the usage of a limited number of sphere



Figure 1: The west facade of the Arena Corinthians in São Paulo (architect: Anibal Coutinho)
and the cost-effective partitioning into different panel types (right) [16]. Most panels
(blue) are parts of right circular cylinders and can be produced by special machines.
Green panels are flat; yellow panels are fabricated with a custom-made mold.

radii. As a by-product of a study of certain deployable structures, Liu et al. [11] presented
surface panelizations with spherical panels of fixed radius and a torsion-free support struc-
ture. The underlying reference surfaces are so-called hyperbolic linear Weingarten surfaces,
characterized by a linear relation aK + bH +c = 0 between Gaussian curvature K and mean
curvature H under the constraint b2 − 4ac < 0. There, the panel boundaries are aligned
with principal curvature directions. It is not surprising that the best results are obtained in
positively curved areas (see Fig. 2, right). This leads us naturally to the next topic.

Figure 2: Left: Paneling with sphere panels over a circular mesh (quad mesh in which each face
possesses a circumcircle) [10]. Right: Sphere panels of constant radius on a design
surface, which exhibits a linear relation between Gaussian and mean curvature [11].

Design surface approximation by Weingarten surfaces. The two principal curvatures κ1, κ2
of a surface at a given point completely determine the shape of a local second-order approx-
imation of a surface. Since architectural surfaces usually do not exhibit rapid changes of
curvature, one can expect that this local approximation is already a good initial shape for a
panel. If we have a surface which has only a one-parameter family of such local approxi-



mations, there must be a functional relation f(κ1, κ2) = 0 between the principal curvatures,
or equivalently, a relation F (K, H) = 0 between Gaussian curvature K = κ1κ2 and mean
curvature H = (κ1 + κ2)/2. Surfaces with such a relation are called Weingarten surfaces.
For them, one can expect that panels along curves of constant K (or equivalently constant
H) can be formed over the same mold. In a grid of N2 panels, this should reduce the num-
ber of different molds to the order N . That initial idea could be verified in computational
experiments [12, 13]. Pellis et al. [12] went even further and developed an algorithm that
approximates a given design surface by a Weingarten surface, where the functional relation
is a result of optimization. Fig. 3 shows an example.
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Figure 3: Approximation of a given surface by a Weingarten surface to an unknown curvature
relation according to [12]. From left to right: The original surface (a) is not a Wein-
garten surface, since isolines of Gaussian curvature K and mean curvature H are not
aligned. After optimization (b), these curves are aligned, characterizing a Weingarten
surface. (c) shows the action of optimization on the (H, K)-diagram. On the original
surface, curvature pairs (H, K) form a region (yellow), which contracts to a curve dur-
ing optimization. For the optimized surface, the same mold (same color) can be used
for panels that are roughly along the same curvature-isoline (d). The appearance of this
panelization (e) is visually smooth.

4 Advantages provided by non-rigid panels

Cold-bent glass panels. As a cost-effective alternative to curved glass produced by hot bend-
ing via molds, cold-bending of glass has been explored [4]. This comes with advantages
of higher optical and geometric quality and possibilities regarding printing and layering and
the use of partly tempered or toughened glass, but imposes big challenges on computational
design. It turned out that even the most advanced and performance-optimized simulation al-
gorithms are insufficient in a near-interactive design environment. Here, deep learning comes
to the rescue: Based on more than a million simulation results, a neural network has been
trained to predict the shape and maximum stress of a glass panel being attached to a given
boundary [6]. This network is then integrated into a near-interactive design tool, which al-
lows one to design or modify freeform skins and panel layouts for optimal usage of cold-bent
glass panels (see Fig. 4).

Panels from isometrically deforming material. Panels from certain materials, such as sheet
metal, are still flexible after being formed over a mold. This deformation is largely isometric
in the geometric sense. An effective method for the computational treatment of isometric
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Figure 4: Here, we show the paneling with cold-bent glass of an initial design (a); the stress in
the panels marked in red exceeds the design limit; these panels would break. After
optimization (b), all panels can be built from planar cold bent glass. The rendering (c)
uses the predicted shape of the panels, demonstrating a very smooth result. We verified
our results by building a physical scale model (d) using borosilicate glass.

deformations (see Fig. 5) lies at the core of an algorithm for optimized paneling in this sce-
nario [9]. The main idea is to use panels of constant Gaussian curvature K, since all panels
of the same constant K can be formed on the same mold of that type. This mold is part of
a sphere of radius 1/

√
K for K > 0 and part of any surface (e.g. a rotational one) with the

right K for K < 0. To our big surprise, very few molds are necessary even for geometrically
highly complex freeform designs (see Fig. 6). [8]. This method also uses developable sur-
faces (K = 0), which are obtained by bending flat sheets, and thus, no mold is required for
those panels.
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Figure 5: The computational model for isometric deformations uses quad meshes. In each quad, it
considers the parallelogram (black) formed by the edge midpoints. It can be shown that
an isometric deformation transforms these parallelograms in a rigid way. Equivalently,
two quad meshes represent isometric surfaces, if for each pair of corresponding faces,
diagonals v0v2, v′

0v′
2 and v1v3, v′

1v′
3 have the same length and enclose the same angle.

5 Fabrication-aware interactive computational design tools

Developable surfaces serve as illustrations for our next topic, which deals with interactive
tools based on the latest results on computational design and optimization. Basically, all



Figure 6: Digital model of the Heidar Aliyev Centre in Baku, Azerbaijan, designed by Zaha Hadid
Architects. The original freeform design can be approximated with high accuracy using
flexible panels from only 10 molds.

algorithms mentioned so far rely on nonlinear least squares formulations of a system of con-
straints that are preferably no more complicated than quadratic (see e.g. [8, 18]). Still, the
underlying geometry representation matters a lot. Our latest work on developable surfaces [3]
(Fig. 7) introduces a new definition for local ruling vectors, which are aligned with the direc-
tion in which one of the two principal curvatures vanishes, κ1 = 0. This novel local criterion,
which is independent of the parameterization of the surface, or its piecewise decomposition,
enables interactive design without nonintuitive restrictions, something not achieved before.
This developable editor is suitable for modeling fabrication techniques involving materials
with minor stretching behavior, such as plywood or sheet metal (see Fig. 8). The careful
formulation of constraints – here, developability –, together with the use of state-of-the-art
parallel solvers, allows for design tools that are fast and efficient, and can be extended beyond
to include further fabrication requirements, e.g. as in [2].
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Figure 7: The computational model for developable meshes moves beyond inscribed parallelo-
grams, allowing for any inscribed (black) planar quads. This, in turn, increases the
expressive power for discrete developables. It is based on local ruling vectors r⃗, which
are computed as the cross product of normals n⃗, n⃗′ of neighboring inscribed quads.



Figure 8: A sequence of still frames from an interactive design manipulation with developable
surfaces. The introduction of new ad-hoc and efficient tools allows users to explore
designs that could not be found with traditional methods.

5  Conclusion

Fundamental research in the field of architectural geometry is evolving quickly. New 
geometric insights yield to the development of novel interactive design tools and open up 
new, more efficient ways to build complex structures, for example, by exploiting material 
properties. It is interesting to note that, at the same time, the gap between research and 
practical application widens. Practitioners are often forced to use outdated tools, resulting 
in second-best or possibly even straight-out wrong results. We are currently using our 
insights in developable surfaces to develop an interactive modelling plugin for commonly 
used CAD systems. In the future, we will increase our efforts to bridge the gap to 
applications so that our research can better serve the demands of architects, designers, and 
engineers.
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