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Abstract: Cost and environment conscious structural design requires efficient
use of resources. Optimizing the utilization of materials while taking into ac-
count the uncertainties can make a significant contribution to this goal. To
achieve optimal load-bearing behavior, the optimization process is of decisive
importance. Since mathematical formulations of an optimization objective often
cannot be achieved, gradient-free methods represent a promising approach for
this task.

1 Introduction

The methodologies employed in structural optimization are commonly applied in design of
engineering structures to achieve an optimal design tailored to the specified purpose. Objec-
tives of optimization may encompass enhancing the structural performance while minimiz-
ing the associated cost involved. While optimization serves its purpose, it often overlooks
the influence of uncertainties inherent in the structure and potentially leading to catastrophic
failure. Accounting for uncertainty during the design optimization is imperative for attain-
ing results reflective of real-world scenarios. Robust Design Optimization (RDO) represents
a methodological approach that integrates consideration of uncertainties in the optimization
process, yielding designs that are less susceptible to the variations in the system [7]. From
engineering standpoint, this implies that structures which are designed with consideration
for uncertainty exhibits less deviation in its performance, thereby reducing the maintenance
cost over the entire life cycle, without compromising efficiency during the initial construc-
tion. This concept is illustrated in Figure 1. The comprehensive process of RDO involves two
distinct phases, with an initial sensitivity analysis playing a crucial role in identifying the crit-
ical design variables. The first phase of RDO is the quantification of uncertainty, while taking
the uncertainty into consideration, the second part focuses on optimizing the design with re-
duced sensitivity towards uncertainties. In this contribution, the uncertainty quantification is
introduced in Section 2, basics about the sensitivity analysis are described in Section 3, the



gradient-free algorithm is introduced in Section 4, surrogate modeling for computationally
expensive FEM is discussed in Section 5 and finally conclusion is presented in Section 6.

Figure 1: Robust Design Optimization

2 Uncertainty Quantification

Uncertainty is broadly classified into two types: epistemic and aleatoric uncertainty. Epis-
temic uncertainty is theoretically completely reducible with improved data quality or in-
creased data volume, however in practice, achieving such reduction can be challenging or
even unattainable. This form of uncertainty typically arises from lack of information or im-
precise knowledge and is commonly modeled using possibilistic approaches such as interval
analysis or fuzzy analysis. Aleatoric uncertainty, on the other hand, cannot be reduced and
signifies the inherent variability of the system or true randomness. Probabilistic methods like
stochastic analysis are employed to model this type of uncertainty. Understanding the nature
of the uncertainty facilitates informed decision-making regarding the appropriate uncertainty
model. However, in practical applications, capturing the uncertain variable effectively often
necessitates a combination of different uncertainty models to accurately represent the uncer-
tainty, which is termed as polymorphic uncertainty [2].

In cases where a scarcity of data impedes the accurate determination of information essential
for stochastic analysis, the situation is denoted as one involving Fuzzy Probability-based
Randomness. In this context, stochastic variables are interpreted and formulated as fuzzy
variables. This modeling approach finds particular application in instances where quantities
are derived from experiments with limited repetitions due to the cost associated constraints.

The structure for this polymorphic model is illustrated in Figure 2. The fundamental solu-
tion, herein represented by the Finite Element Method (FEM), is enclosed by a stochastic
analysis, which is in turn encapsulated within a fuzzy analysis. This implies that, during each
fuzzy evaluation, a stochastic analysis is executed, and during each stochastic analysis, the
fundamental solution is assessed. Given the iterative nature of this analysis, conducting such



Figure 2: Schematic of fuzzy probability based randomness

assessment for a complex problem can become prohibitively expensive, particularly when
fundamental solution itself is computationally intensive.

Within the scope of this study, to mitigate the computational costs, the fundamental solution
is substituted with a Physics Informed Neural Network (PINN) serving as surrogate. The uti-
lization of the Neural Network (NN) prompts an exploration into the feasibility of applying
Monte-Carlo (MC) Dropout, as introduced in [5], as a replacement to the stochastic analysis.
This method constitutes a probabilistic deep learning technique, which leverages the appli-
cation of the dropout even while inference. Dropout as introduced in [11] is a regularization
technique that mitigates over fitting by randomly dropping off the neurons during training.
This phenomenon could also be exploited during prediction to approximate BAYESian infer-
ence. The results obtained from the analysis are investigated to ascertain the applicability of
MC Dropout to capture the stochastic behavior. In this study, dense Feed Forward Neural
Networks (FFNN) are trained on a dataset representing a linear elastic constitutive descrip-
tion based on the study presented in [12]. These FFNN are implemented with MC Dropout.
The relative errors are calculated as NNdropout−NNref, where NNref is given by the NN output
with no dropout. Observations from the conducted test indicate that the MC Dropout effec-
tively introduces uncertainty in the output of the NN, as illustrated in Figure 3. The dropout
rate has a great influence in the level of uncertainty introduced. Alongside this parameter, the
distribution of the dataset also exerts considerable influence on the results. In the case with
unperturbed dataset as illustrated in Figure 3a, the standard deviation associated with the rel-
ative error is the lowest and increases with an increase in the dropout rate. Similar trend is
noticed in the case of Gumbel distribution as displayed in Figure 3c, however the standard
deviation associated is higher than unperturbed dataset and increases further with an increase
in the dropout rate. A shift in the mean value is noticed, which could be attributed to distri-
bution of the dataset. In the case with normally distributed dataset as depicted in Figure 3b,
the amount of relative error remains effectively constant across all the dropout rates.

3 Sensitivity Analysis

The optimization problem is defined by a set of design parameters; however, in the presence
of a large number of design parameters, computational cost escalates. The response is contin-
gent upon all the design parameters, yet the influence of certain parameters on the response
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(a) Unperturbed data
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(b) Dataset with normal distribution
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(c) Dataset with Gumbel distribution

Figure 3: Uncertainty in the NN output due to MC Dropout with different data distributions



is more pronounced than others. The objective of conducting the sensitivity analysis is iden-
tify the critical design parameters, thereby streamlining the optimization problem to focus on
these pivotal design parameters. The sensitivity analysis encompasses two techniques, local
sensitivity analysis and global sensitivity analysis These two methods are grounded in two
distinct assumptions.

The local sensitivity analysis centers on the small perturbations in the vicinity of the nominal
input value. This is realized by calculating the gradients or partial derivatives of the objec-
tive function, facilitating an understanding of the model’s behavior in the immediate vicinity
around the nominal value. This approach is applied in cases where only slight variation is
anticipated and comprehension of its impact on the output values is essential.

On the other hand, the global sensitivity analysis takes into consideration the entire parame-
ter space, exploring a wider range of possible values. It involves using approaches like MC
simulation or latin hypercube sampling, to explore the parameter space. It provides a com-
prehensive assessment of the effect of entire parameter space on the output. Consequently,
this approach allows for the identification of the most critical factor and an evaluation of the
system’s robustness under diverse conditions [9].

4 Gradient-free Optimization

Design optimization constitutes a pivotal yet formidable stage in achieving an efficient struc-
ture with comparable performance. The primary objective of design optimization is to iden-
tify optimal design parameters that enhance performance, robustness and efficiency concur-
rently. This formulation represents a multi-objective optimization that is typically addressed
by optimization algorithms.

Gradient-based optimization methods employ gradients to determine the search direction in
the parameter space. While computationally efficient, these algorithms necessitate the avail-
ability of the derivative of the optimization function. A challenge arises when obtaining the
required gradients is intricate or when the objectives for optimization exhibits conflicting gra-
dients. Additionally, gradient-based methods are more adept at handling continuous variables
[8].

Modern Metaheuristic Algorithms (MA) offer an alternative solution. These population
based algorithms are implicitly used in engineering optimization [1]. MAs exhibit robust-
ness against noise and are also adept at discovering the global optimum. However, they entail
higher computational efforts, especially when dealing with a substantial number of design pa-
rameters. The selection of the optimal optimization algorithm for a given objective function
under consideration is an optimization problem in itself [14].

The "No Free Lunch Theorem" states that the performance of all the optimization algorithms
when averaged over different objective functions is equivalent [13]. Thus, the superiority of
one algorithm over others cannot be unequivocally established. Moreover, the results yielded
by different algorithms does not necessarily have to conform to each other. Thus, an essential
parameter to consider is the evaluation time of the algorithm.



In this study, the optimization algorithm that is selected for implementation is NSGA-II as
introduced in [4]. This optimization algorithm is provided within the Python based frame-
work Pymoo [3]. The schematic representation of the NSGA-II for finding the Pareto set in
described in Figure 4. In the generation t, the parent population is described as Pt and the

Figure 4: Schematic representation of NSGA-II

offspring population is as Ot. These two combine to form the new population set Rt. Subse-
quently, non-dominated sorting is applied to categorize individuals into different sets.

An individual solution is considered superior over the other solutions when it exhibits no
worse performance across all the objective function, at the same time outperforms the other
solutions in at least one objective function. This criterion is termed as fitness. During the
assignment of fitness level, least dominated solutions are assigned a higher fitness level and
thus allocated to set F1, subsequently solutions are ranked and allocated to a set. A tourna-
ment competition is conducted to select the solutions from these sets. The outcome of the
tournament is determined by the set to which the solution belongs. The solution from a lower
numbered set is selected as a winner. If both the solutions belong to the same set, then the
selected solution is the one with the highest crowd distance. Consequently, from the original
population of 2N , only N are selected to repopulate the population pool.

The re-population is conducted by Simulated Binary Crossover (SBX) and polynomial muta-
tion methods. According to these methods, two offsprings are generated from parents and the
degree of variation between parents and offsprings is governed by the crossover index ηc. For
large values of ηc, offsprings have a higher probability to resemble parents and for a lower
values, the offsprings are distant from the parents. Upon obtaining the Pareto set, the utopia
point method gives the single optimal point.



5 Surrogate Model

A class of Artificial Neural Networks termed as Physics Informed Neural Networks (PINN)
is introduced in [10]. These NN integrate the physical laws in their training. These physical
constraints are introduced as additional loss functions. When the NN optimizes on these loss
functions, it concurrently generalizes on the physical constraints. These networks are particu-
larly useful in solving Partial Differential Equations (PDE). Despite their primary application
in PDE solving, due to the reduced amount of the data required for training, the versatility of
application of PINNs exceeds beyond this domain.

In [6], the potential of PINN as surrogate model is explored for sensitivity analysis. Under-
taking uncertainty quantification and optimization is an equally expensive task, necessitating
numerous simulations. As an alternative approach, PINNs can be configured with the pa-
rameter of interest as an input quantity. Given the reduced reliance on extensive training
data, PINNs offer the feasibility of serving as surrogate models in scenarios where traditional
methods may be impractical.

Within the framework of PINNs, the networks input encompass spatial and temporal vari-
ables in Cartesian coordinates. This allows the differentiation of the network’s output with
respect to the input. This can be realized with Automatic Differentiation (AD). In the con-
text of a 2D optimization problem of a slab, the thickness of the slab denoted by d could be
imposed as an additional input to the PINNs which influences the stiffness of the element.
With this formulation, the generated model is a function of d in conjunction with the spa-
tial and temporal variables. However, with this formulation, the model would need a dataset
with various values of d. This could hinder the ability of the PINN to extrapolate on this
input. Nevertheless, the parameter space of this variable has to be defined to cover all the
possibilities.

6 Conclusion

In this publication, the theoretical groundwork for the Robust Design Optimization is laid,
defining the components of RDO and the methodology is defined for the future work. Within
the RDO, in order to reduce the computational cost, the theoretical possibility to implement
PINNs as surrogate is explored, furthermore, the possibility to replace the stochastic analysis
within the polymorphic uncertainty framework with MC Dropout is investigated.

According to "No Free Lunch Theorem", no single gradient-free optimization algorithm is
superior to the other algorithms for all the use cases. Thus, literature is reviewed to discern
the appropriate optimization algorithm for the application towards which this literature study
is conducted. Future development involves implementing the discussed literature in order to
obtain the substantive results to substantiate the claims.
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